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Abstract
In this paper, we classify all values of the parameters α, β, γ and δ of the
Painlevé VI equation such that there are rational solutions. We give a formula
for them up to the birational canonical transformations and the symmetries of
the Painlevé VI equation.

PACS number: 0230

1. Introduction

In this paper, we study the general Painlevé sixth equation
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(PVI)

wherex ∈ C andα, β, γ, δ are arbitrary complex parameters. The general solutiony(x; c1, c2)

of the PVI equation satisfies the following two important properties (see [Pain, Gam]).

(1) The Painlevé property. The solutions y(x; c1, c2) may have complicated singularities (i.e.
branch points, essential singularities etc) only at the critical points 0, 1,∞ of the equation
(the so-called fixed singularities). All the other singularities, the positions of which depend
on the integration constants (the so-called movable singularities), are poles.

(2) For generic values of the integration constants c1, c2 and of the parameters α, β, γ, δ, the
solution y(x; c1, c2) cannot be expressed via known functions.

The latter property needs to be stated more precisely. Following [Um1, Um2], we define
known or classical functions to be functions that can be obtained from the field of rational
functions C(x), by a finite iteration of the following operations:

(i) derivation;
(ii) quadrature;

(iii) arithmetic operations +,−,×,÷;
(iv) solution of a homogeneous linear ordinary differential equations with classical

coefficients;
(v) substitution into an Abelian function;
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(vi) solution of algebraic differential equations of first order with classical coefficients.

According to this definition, Watanabe (see [Wat]) proved that for generic values of the
integration constants c1, c2 and of the parametersα, β, γ, δ, the solutions y(x; c1, c2) of the PVI
equation are non-classical and classified all the one-parameter families of classical solutions
of the PVI equation. Loosely speaking, Watanabe proves that all one-parameter families of
classical solutions of the PVI equation are realized for values of the parameters α, β, γ, δ lying
on the walls of the Weyl chamber of the group W̃ of the birational canonical transformations1.
Such one-parameter families of classical solutions, already found by Okamoto, shrink down,
by the action of the group W̃ , to the following list2:

(i) y(x) ≡ ∞, for α = 0;
(ii) y(x) ≡ 0, for β = 0;

(iii) y(x) ≡ 1, for γ = 0;
(iv) y(x) ≡ x, for δ = 1

2 ;
(v) Riccati solutions,

d

dx
y = −y(y − 1)(y − x)

x(x − 1)

(
ϑ1

y
+
ϑ2 − 1

y − x
+

ϑ3

y − 1

)
(1.1)

for ϑ∞ = ϑ1 + ϑ2 + ϑ3, where ϑ∞, ϑ1, ϑ2, ϑ3 are defined by

α = (ϑ∞ − 1)2

2
β = −ϑ2

1

2
γ = ϑ2

3

2
δ = 1 − ϑ2

2

2
. (1.2)

The theory of the rational and classical solutions of the Painlevé sixth equation has been
extensively studied in [Ai,AMM,Gr,GL,Luk,Um,Wat]. In this paper we classify all rational
solutions of the PVI equation. We prove the following.

Main theorem. All rational solutions of the PVI equation belong to the intersection of two or
more one-parameter families of classical solutions, i.e. they occur for

ϑ∞ +
3∑

k=1

εkϑk ∈ 2Z εk = ±1 and ϑk ∈ Z for at least one k = 1, 2, 3,∞.

All rational solutions of the PVI equation are equivalent via birational canonical
transformations and up to symmetries3 to the following solutions:

y(x) = (1 + ϑ2)(x − 1)

(1 + ϑ2 + ϑ3)(1 + ϑ2 + x + xϑ3)
for ϑ∞ = −

3∑
k=1

ϑk and ϑ1 = 1

y(x) = (ϑ2 + ϑ3x)
2 − ϑ2 − ϑ3x

2

(ϑ2 + ϑ3 − 1)(ϑ2 + ϑ3x)
for ϑ∞ = −

3∑
k=1

ϑk and ϑ1 = −2.

Our method to prove this result does not use Umemura’s theory, but the isomonodromy
deformation method (see [Fuchs, Sch, JMU, ItN, FlN]). The PVI equation is represented as the
equation of isomonodromy deformation of the two-dimensional auxiliary Fuchsian system

d

dλ
� =

( A1

λ − u1
+

A2

λ − u2
+

A3

λ − u3

)
� (1.3)

1 Recall that W̃ is isomorphic to Wa(D4) the affine extension of the Weyl group of D4, (see [Ok]).
2 The group W̃ acts on y(x) and on its conjugate momentum p(x). In the list (i)–(iv) the conjugate momentum p(x)

is given by a one-parameter family.
3 The symmetries of the PVI equation are compositions of the following transformations: (i) x → 1−x, y → 1−y,
ϑ1 ↔ ϑ3, (ii) x → 1

x
, y → 1

y
, ϑ∞ ↔ ϑ1 + 1, (iii) x → 1

1−x
, y → q−x

x−1 , ϑ1 ↔ ϑ2.
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Aj being 2 × 2 matrices independent of λ, and u1, u2, u3 being pairwise distinct complex
numbers. The matrices Aj satisfy the following conditions:

eigen(Aj ) = ±ϑj

2
and − A1 − A2 − A3 = A∞ := 1

2

(
ϑ∞ 0
0 −ϑ∞

)

ϑj , j = 1, 2, 3,∞ being related to the parameters α, β, γ, δ of the PVI equation as in (1.2).
The entries of the matrices Ai are complicated expressions of x, y, yx and of some

quadrature
∫
R(x, y) dx, x, being the cross ratio of the poles x = u2−u1

u3−u1
. The monodromy

matrices M1, M2 and M3 of (1.3) remain constant if and only if y = y(x) satisfies the PVI
equation. To each branch of a solution of the PVI equation corresponds a triple M1,M2,M3

of monodromy matrices, which is unique up to

(M1,M2,M3) → L−1
∞ (M1,M2,M3)L∞

where L∞ is any constant invertible matrix such that [L∞,M∞] = 0 (see section 2).
Following the same strategy as in [DM], we describe the procedure of analytic continuation

of a branch of a solution of the PVI equation by the action of the pure braid group on its
monodromy matrices. Since rational solutions have only one branch, we look for fixed points
of this action. We show that a necessary condition to have a rational solution is that the
corresponding monodromy group is Abelian (see section 3).

Abelian 2 × 2 monodromy groups are reducible. In section 4, we classify all solutions of
the PVI equation having a reducible monodromy group (such solutions where found in [Hit]
as a reduction of Nahm’s equations for a diffeomorphic group). Then we classify all rational
solutions among them.

2. The Painlevé VI equation as the isomonodromic deformation equation of a 2 × 2
Fuchsian system

Consider the following Fuchsian system with four pairwise distinct regular singularities at
u1, u2, u3,∞:

d

dλ
� =

( A1

λ − u1
+

A2

λ − u2
+

A3

λ − u3

)
� λ ∈ C\{u1, u2, u3,∞} (2.1)

Aj being 2 × 2 matrices independent of λ. Assume that the matrices Aj satisfy the following
conditions:

eigen(Aj ) = ±ϑj

2
and − A1 − A2 − A3 = A∞ (2.2)

for some constants ϑj , j = 1, 2, 3 and

A∞ := 1
2

(
ϑ∞ 0
0 −ϑ∞

)
for some constant ϑ∞ �= 0. (2.3)

The solution �(λ) of the system (2.1) is a multi-valued analytic function on C\{u1, u2, u3},
and its multivaluedness is described by the monodromy matrices. To define them, we fix a
basis γ1, γ2, γ3 of loops in π1(C\{u1, u2, u3,∞},∞) as in figure 1, and a fundamental matrix
for the system (2.1).

Proposition 2.1. There exists a fundamental matrix of the system (2.1) of the form

�∞(λ) =
(

1 + O
(

1

λ

))
λ−A∞λ−R∞ as λ → ∞ (2.4)
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Figure 1. The branch-cuts πj between the ordered singularities uj and the oriented loops γj in the
λ-plane.

where λ−R∞ := e−R∞ log λ, with the choice of the principal branch of the logarithm with the
branch-cut along the common direction η of the cuts π1, π2, π3 and the matrix entries of R∞
given by R∞11 = R∞22 = 0 and

for ϑ∞ �∈ Z and for ϑ∞ = 0 R∞12 = R∞21 = 0

for ϑ∞ = n ∈ Z+ R∞12 = R∞12(A1,2,3, u1,2,3) R∞21 = 0

for ϑ∞ = −n, n ∈ Z+ R∞21 = R∞21(A1,2,3, u1,2,3) R∞12 = 0

(2.5)

where the functions R∞12,21(A1,2,3, u1,2,3) are uniquely determined by (A1,2,3, u1,2,3). Such a
fundamental matrix �∞(λ) is uniquely determined up to

�∞(λ) → �∞(λ)L∞ (2.6)

where L∞ is any constant invertible matrix such that

λ−A∞λ−R∞L∞λA∞λR∞ = 1 +
N∑
k=1

L
(k)
∞
λk

(2.7)

for some L(1)
∞ , . . . , L

(N)
∞ constant matrices.

The proof can be found in [Dub].
The fundamental matrix �∞ can be analytically continued to an analytic function on the

universal covering of C\{u1, u2, u3,∞}. For any element γ ∈ π1(C\{u1, u2, u3,∞},∞) we
denote the result of the analytic continuation of �∞(λ) along the loop γ by γ [�∞(λ)]. Since
γ [�∞(λ)] and �∞(λ) are two fundamental matrices in the neighbourhood of infinity, they are
related by the following relation:

γ [�∞(λ)] = �∞(λ)Mγ

for some constant invertible 2 × 2 matrix Mγ depending only on the homotopy class of γ .
Particularly, the matrix M∞ := Mγ∞ , γ∞ being a simple loop around infinity in the clockwise
direction, is given by

M∞ = exp(2π iA∞) exp(2π iR∞). (2.8)
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The resulting monodromy representation is an anti-homomorphism:

π1(C\{u1, u2, u3,∞},∞) → SL2(C)

γ �→ Mγ

(2.9)

Mγ γ̃ = Mγ̃Mγ . (2.10)

The images Mj := Mγj of the generators γj , j = 1, 2, 3 of the fundamental group are called
the monodromy matrices of the Fuchsian system (2.1). They generate the monodromy group of
the system, i.e. the image of the representation (2.9). Since the loop (γ1γ2γ3)

−1 is homotopic
to γ∞, the following relation between the generators holds:

M∞M3M2M1 = 1. (2.11)

Observe that if we fix another fundamental matrix �′
∞ = �∞L∞ in the equivalence class

defined by (2.6), the monodromy matrices M′
γ with respect to the new fundamental matrix

�′
∞ are related to the old ones by

M′
j = L−1

∞ MjL∞ j = 1, 2, 3.

Thus the monodromy matrices M3, M2, M1 are uniquely defined up to the ambiguity

(M1,M2,M3) ∼ (L−1
∞ M1L∞, L−1

∞ M2L∞, L−1
∞ M3L∞) (2.12)

where L∞ is given by (2.7). Observe that M∞ is invariant w.r.t. (2.12).
I recall the definition of the connection matrices. Near the poles uj , the fundamental

matrices �j(λ) of the system (2.1), are given by the following.

Proposition 2.2. There exists a fundamental matrix of the system (2.1) of the form

�j(λ) = Gj(1 + O(λ − uj ))(λ − uj )
Jj (λ − uj )

Rj as λ → uj (2.13)

where

for ϑj �= 0 Jj = 1
2

(
ϑj 0
0 −ϑj

)

for ϑj = 0 Jj = J ≡
(

0 1
0 0

)
.

The invertible matrix Gj is defined by Aj = GjJjG
−1
j , the diagonal elements of the matrix

Rj are zero and the off-diagonal ones are defined as follows:

for ϑj �∈ Z and for ϑj = 0 Rj 12 = Rj 21 = 0

for ϑj = n ∈ Z+ Rj 12 = Rj 12(A1,2,3, u1,2,3) Rj 21 = 0

for ϑj = −n, n ∈ Z+ Rj 21 = Rj 21(A1,2,3, u1,2,3) Rj 12 = 0

(2.14)

where the functions Rj 21,12(A1,2,3, u1,2,3) are uniquely determined by A1,2,3 and u1,2,3. The
choice of the branch of log(z − uj ) is along η as above. The fundamental matrix �j(λ) is
uniquely determined up to the ambiguity:

�j(λ) �→ �j(λ)Lj (2.15)

where Lj is any constant invertible matrix such that

(λ − uj )
Jj (λ − uj )

Rj Lj (λ − uj )
−Jj (λ − uj )

−Rj =
N∑
k=0

L
(k)
j (λ − uj )

k (2.16)

for L(0)
j = Gj and for some L(1)

j , . . . , L
(N)
j constant matrices.
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The proof can be found in [Dub].
Continuing the solution �∞(λ) to a neighbourhood of uj , along, say, the right-hand side

of the branch-cut πj , one obtains another fundamental matrix around uj , that must be related
to �j(λ) by

�∞(λ) = �j(λ)Cj (2.17)

for some invertible matrix Cj . The matrices C1, C2, C3 are called connection matrices, and they
are defined by (2.17) up to the ambiguity Cj → CjL∞ due to (2.6). The connection matrices
are related to the monodromy matrices as follows:

Mj = C−1
j exp(2π iJj ) exp(Rj )Cj j = 1, 2, 3. (2.18)

Thanks to the above relation it follows that

eigen(Mj ) = exp(±π iϑj ). (2.19)

Definition 2.3. The monodromy data of the Fuchsian system (2.1) are

{(M1,M2,M3)/∼,R1,R2,R3}
where ∼ is the equivalence relation defined by (2.12).

Remark 2.4. For non-integer ϑj , the correspondent Rj matrix is zero by definition and we
drop it from the set of the monodromy data.

The theory of the deformations the poles of the Fuchsian system keeping the monodromy
fixed is described by the following result.

Theorem 2.5. Let {(M1,M2,M3)/∼,R1,R2,R3} be monodromy data of the Fuchsian
system:

d

dλ
�0 =

( A0
1

λ − u0
1

+
A0

2

λ − u0
2

+
A0

3

λ − u0
3

)
�0 (2.20)

of the above form (2.2), with pairwise distinct polesu0
j , and with respect to some basis γ1, γ2, γ3

of the loops in π1(C\{u0
1, u

0
2, u

0
3,∞},∞). If Mk �= ±1 for all k = 1, 2, 3,∞, there exists a

neighbourhoodU ⊂ C
3 of the point u0 = (u0

1, u
0
2, u

0
3) such that, for any u = (u1, u2, u3) ∈ U ,

there exists a unique triple A1(u), A2(u), A3(u) of analytic matrix-valued functions such that

Aj (u
0) = A0

j i = 1, 2, 3

and the monodromy matrices of the Fuchsian system

d

dλ
� = A(λ; u)� =

( A1(u)

λ − u1
+

A2(u)

λ − u2
+

A3(u)

λ − u3

)
� (2.21)

with respect to the same basis4 γ1, γ2, γ3 of the loops can be chosen to coincide with the given
M1, M2 and M3. The matrices Aj (u) are the solutions of the Cauchy problem with the initial
data A0

j for the following Schlesinger equations:

∂

∂uj
Ai = [Ai ,Aj ]

ui − uj

∂

∂ui
Ai = −

∑
j �=i

[Ai ,Aj ]

ui − uj
. (2.22)

The solution�0
∞(λ)of (2.20) of the form (2.4) can be uniquely continued, forλ �= ui i = 1, 2, 3,

to an analytic function �∞(λ, u), u ∈ U , such that

�∞(λ, u0) = �0
∞(λ).

4 Observe that the basis γ1, γ2, γ3 of π1(C\{u1, u2, u3,∞},∞) varies continuously with small variations of
u1, u2, u3. This new basis is homotopic to the initial one, so one can identify them.
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This continuation is the local solution of the Cauchy problem with the initial data �0
∞ for the

following system that is compatible with the system (2.21):

∂

∂ui
� = − Ai (u)

λ − ui
�.

Moreover the functions Ai (u) and �∞(λ, u) can be continued analytically to global
meromorphic functions on the universal coverings of

C
3\{diags} := {(u1, u2, u3) ∈ C

3|ui �= uj for i �= j}
and

{(λ, u1, u2, u3) ∈ C
4|ui �= uj for i �= j and λ �= ui i = 1, 2, 3}

respectively.

The proof of this theorem can be found, for example, in [Mal, Miwa, Sib].

Remark 2.6. Observe that the isomonodromic deformation equations preserve the connection
matrices Ci too.

Remark 2.7. When Mk = ±1 for some k = 1, 2, 3,∞, the existence statements of
theorem 2.5 are still valid, while the uniqueness ones are lost.

Let me now explain, following [JMU], how to rewrite the Schlesinger equations (2.22) in
terms of the PVI equation. We can assume ϑ∞ �= 0 without loss of generality (see remark 2.9
below). Schlesinger equations (2.22) with fixed A∞ are invariant with respect to the gauge
transformations of the form

Ai �→ D−1AiD i = 1, 2, 3 for any D diagonal matrix. (2.23)

We introduce two coordinates (p, q) on the quotient of the space of matrices satisfying (2.22)
with respect to the equivalence relation (2.23) and a coordinate k that contains the above gauge
freedom:

[A(q; u1, u2, u3)]12 = 0 p =
3∑

k=1

Ak11 + ϑk
2

q − uk
k = 2P(λ)[A(λ; u1, u2, u3)]12

ϑ∞(q − λ)

where A(z; u1, u2, u3) is given in (2.21) and P(λ) = (λ− u1)(λ− u2)(λ− u3). The matrices
Ai are uniquely determined by the coordinates (p, q) and k and expressed rationally in terms
of them:

Ai11 = 1

ϑ∞P ′(ui)

{
P(q)(q − ui)p

2 + P(q)(q − ui)p

(
ϑ∞

q − ui
−

3∑
k=1

ϑk

q − uk

)

+(q − ui)

[
ϑ∞2

4

(
q + 2ui −

3∑
k=1

uk

)
+

3∑
k=1

ϑ2
k

4

(
q + 2uk −

3∑
j=1

uj

)]

+
q − ui

2
(ϑ1ϑ2(q − u3) + ϑ1ϑ3(q − u2)

+ϑ2ϑ3(q − u1)) − ϑ∞
2

3∑
k=1

ϑk

q − uk

}

Ai12 = −ϑ∞k
q − ui

2P ′(ui)

Ai21 = 1

Ai12

(
ϑ2
i

4
− Ai

2
11

)

Ai22 = −Ai11

(2.24)
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for i = 1, 2, 3, where P ′(z) = dP
dz . The Schlesinger equations (2.22) in these variables are

∂q

∂ui
= P(q)

P ′(ui)

[
2p +

1

q − ui
−

3∑
k=1

ϑk

q − uk

]

∂p

∂ui
= −

{
P ′(q)p2 +

[
2q + ui −

∑
j

uj −
3∑

k=1

ϑk

(
2q + uk −

∑
j

uj

)]
p

+
1

4

( 3∑
k=1

ϑk − ϑ∞

)( 3∑
k=1

ϑk + ϑ∞ − 2

)}
1

P ′(ui)

(2.25)

and
∂ log(k)

∂ui
= (ϑ∞ − 1)

q − ui

P ′(ui)
(2.26)

for i = 1, 2, 3. The system of the reduced Schlesinger equations (2.25) is invariant under the
transformations of the form

ui �→ aui + b q �→ aq + b p �→ p

a
∀a, b ∈ C a �= 0.

Introducing the following new invariant variables:

x = u2 − u1

u3 − u1
y = q − u1

u3 − u1
(2.27)

the system (2.25), expressed in the these new variables, gives the PVI equation for y(x) with
parameters

α = (ϑ∞ − 1)2

2
β = −ϑ2

1

2
γ = ϑ2

3

2
δ = 1 − ϑ2

2

2
. (2.28)

Remark 2.8. Observe that permutations of the poles ui and of the values ϑi , i = 1, 2, 3,∞
induce transformations of (y, x) of the type x → 1 − x and y → 1 − y, x → 1

x
and y → 1

y
,

x → 1
1−x

and y → y−x

1−x
and their compositions. These transformations are the symmetries of

the Painlevé VI equation.

Remark 2.9. It is clear from (2.28) that changes of the signs of the parameters ϑk , k = 1, 2, 3,
and transformations on ϑ∞ of type ϑ∞ → 2 − ϑ∞ give rise to the same PVI equation.

We summarize the results of this section in the following.

Theorem 2.10. Branches y(x) of solutions of the PVI equation with parameters α, β, γ and
δ, considered up to symmetries, are in one-to-one correspondence with local solutions of the
Schlesinger equations (2.22) with parameters ϑ1, ϑ2, ϑ3, ϑ∞ given by (2.28) and A∞ given
in (2.3), considered up to diagonal conjugation (2.23) and permutation. This one-to-one
correspondence is realized by the formulae (2.24), (2.27). For each branch of a solution of the
PVI equation, there exists a unique triple of monodromy matrices {(M1,M2,M3)/∼, }. Vice
versa, given any triple of monodromy matrices M1, M2 and M3 such that

eigen(Mj ) = exp(±π iϑj ) (M3M2M1)
−1 = M∞ eigen(M∞) = exp(±π iϑ∞)

Mk �= ±1 ∀k = 1, 2, 3,∞
with some numbers ϑ1, ϑ2, ϑ3, ϑ∞, if there exists a branch of a solution of the PVI equation
with parameters (2.28) such that the Fuchsian system of the form (2.1) given by (2.24) has
the prescribed monodromy matrices M1, M2 and M3, then this branch is unique modulo
symmetries.
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3. Analytic continuation and rational solutions of the Painlevé VI equation

In theorem 2.10, we parametrized branches of generic solutions of the PVI equation by triples
of monodromy matrices. Following [DM], now we show how these parameters change with
a change of the branch in the process of analytic continuation of the solutions along a path
in C\{0, 1,∞}. Recall that, as follows from theorem 2.5, any solution of the Schlesinger
equations can be continued analytically from a point (u0

1, u
0
2, u

0
3) to another point (u1

1, u
1
2, u

1
3)

along a path

(u1(t), u2(t), u3(t)) ∈ C
3\{diags} 0 � t � 1

where {diags} = {u1, u2, u3|ui = uj , for some i �= j} and

ui(0) = u0
i and ui(1) = u1

i

provided that the end-points are not the poles of the solution. The result of the analytic
continuation depends only on the homotopy class of the path in C

3\{diags}. Particularly, to
find all the branches of a solution near a given point u0 = (u0

1, u
0
2, u

0
3) one has to compute the

results of the analytic continuation along any homotopy class of closed loops in C
3\{diags}

with the beginning and the end at the point u0 = (u0
1, u

0
2, u

0
3). Let

β ∈ π1(C
3\{diags}; u0)

be an arbitrary loop. Any solution of the Schlesinger equations near the pointu0 = (u0
1, u

0
2, u

0
3),

is uniquely determined up to (2.23) by the monodromy matrices M1, M2 and M3, computed
with respect to the basis of loops γ1, γ2 and γ3. Continuing analytically this solution along
the loop β, we arrive at another branch of the same solution near u0. This new branch is
specified, according to theorem 2.10, by some new monodromy matrices Mβ

1 , Mβ

2 and Mβ

3 ,
computed in the same basis γ1, γ2, γ3. We want to compute these new matrices for any loop
β ∈ π1(C

3\{diags}; u0). The fundamental group π1(C
3\{diags}; u0) is isomorphic to the pure

(or unpermuted) braid group, P3 with three strings (see [Bir]).

Lemma 3.1. For the generators β1, β2 and β3 of the pure braid group P3, Mβ

i have the
following form:

Mβ1
1 = M1M2M1M−1

2 M−1
1 Mβ1

2 = M1M2M−1
1 Mβ1

3 = M3 (3.1)

Mβ2
1 = M1M3M1M−1

3 M−1
1 Mβ2

3 = M1M3M−1
1

Mβ2
2 = M1M3M−1

1 M−1
3 M2M3M1M−1

3 M−1
1

(3.2)

Mβ3
1 = M1 Mβ3

2 = M2M3M2M−1
3 M−1

2 Mβ3
3 = M2M3M−1

2 . (3.3)

Proof. This lemma is proved in [DM]. �

Lemma 3.2. A necessary condition for a solution of the Painlevé VI equation to be rational is
that the corresponding monodromy matrices M1,M2,M3 are fixed points under the above
action (3.1)–(3.3) on the space of triples

{(M1,M2,M3)/∼,M3M2M1 = M−1
∞ }

the equivalence relation ∼ being defined in (2.12).

Proof. The action (3.1)–(3.3) of the pure braid group on the triples of monodromy matrices
describes the structure not only of the analytic continuation of the solutions of the Schlesinger
equations (2.22), but also of the reduced ones (2.25) and thus of the PVI equation. A
necessary condition for a solution to be rational is that it has only one branch. Since the
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action (3.1)–(3.3) of the pure braid group on the triples of monodromy matrices commutes
with the conjugation (2.12), the triple of monodromy matrices M1,M2,M3 corresponding
to a rational solution is unique up to (2.12). �

Lemma 3.3. A necessary condition to have a rational solution of the Painlevé VI equation is
that the corresponding monodromy matrices all commute

[Mi,Mj ] = 0 ∀i, j = 1, 2, 3. (3.4)

Proof. By lemma 3.2, we have to impose

L∞−1
1 M1L∞1 = Mβ1

1 = M1M2M1M−1
2 M−1

1

L∞−1
1 M2L∞1 = Mβ1

2 = M1M2M−1
1

L∞−1
1 M3L∞1 = Mβ1

3 = M3

(3.5)

L∞−1
2 M1L∞2 = Mβ2

1 = M1M3M1M−1
3 M−1

1

L∞−1
2 M2L∞2 = Mβ2

2 = M1M3M−1
1 M−1

3 M2M3M1M−1
3 M−1

1

L∞−1
2 M3L∞2 = Mβ2

3 = M1M3M−1
1

(3.6)

L∞−1
3 M1L∞3 = Mβ3

1 = M1

L∞−1
3 M2L∞3 = Mβ3

2 = M2M3M2M−1
3 M−1

2

L∞−1
3 M3L∞3 = Mβ3

3 = M2M3M−1
2

(3.7)

for some suitable matrices L∞1, L∞2 and L∞3 that are diagonal for ϑ∞ �∈ Z, are in Jordan
form for ϑ∞ ∈ Z and R∞ �= 0 and are arbitrary invertible matrices for ϑ∞ ∈ Z and R∞ = 0.
Then we have to distinguish three cases: (i) M∞ �= ±1 is diagonal; (ii) M∞ �= ±1 is in
Jordan form and (iii) M∞ = ±1.

(i) In this case, the matrices L∞1, L∞2, L∞3 are diagonal. If none of the matrices M1,2,3 is
diagonal in the basis of M∞ diagonal, then the above matrices L∞1, L∞3 must be chosen
to be multiples of the identity. Thus, from

M2 = Mβ1
2 = M1M2M−1

1 M3 = Mβ3
3 = M2M3M−1

2

it follows immediately that

[M2,M1] = 0 and [M2,M3] = 0

thus

L∞−1
2 M2L∞2 = Mβ2

2 = M2

i.e. L∞2 is the identity matrix as well and thus we obtain (3.4). If one of the monodromy
matrices M1,2,3 is diagonal in the basis of M∞ diagonal, for example M1, then L∞1 is
the identity matrix and and from (3.5) we have that either M1 is the identity or M2 is
diagonal as well. If M1 �= 1, M2 is diagonal, M∞ being diagonal as well, M3 must be
diagonal and we find again (3.4). If M1 = ±1, then M∞M3M2 = ±1 and

M2M3M−1
2 = L∞−1

3 M3L∞3 = L∞−1
3 M−1

∞ M−1
2 L∞3

= M−1
∞ L∞−1

3 M−1
2 L∞3 = M−1

∞ M2M3M−1
2 M−1

3 M−1
2

M2M3 = M3M2M2M3M−1
2 M−1

3

which implies that M2 and M3 commute.
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(ii) Suppose that M∞ is in Jordan form, for example upper triangular. Then the matrices
L∞1, L∞2, L∞3 have the form

(1 a

0 1

)
for some constant a. If none of the matrices

M1,M2,M3 is in upper-triangular Jordan form, all matrices L∞1, L∞2, L∞3 are the
identity matrix and we obtain (3.4) as above. Suppose that one of the monodromy matrices,
for example M1 is in upper-triangular Jordan form. Then, again [M2,M1] = 0 and thus
either M1 = ±1 or M2 is in upper-triangular Jordan form as well. If M1 �= ±1, then M2

is in upper-triangular Jordan form, M∞ being in upper-triangular Jordan form, then M3

must be in upper-triangular Jordan form as well, and we find again (3.4). If M1 = ±1,
then as above

M2M3 = M∞M2M3M−1
∞

which implies that M2 and M3 commute.
(iii) In this case, L∞1, L∞2, L∞3 are arbitrary invertible matrices. Let one of the monodromy

matrices, say M1, be diagonalizable and let us work in the basis of M1 diagonal. For
M1 �= ±1, one has L∞3 diagonal and [M2,M3] = 0. As a consequence

L∞−1
2 M2L∞2 = M1M3M−1

1 M2M1M−1
3 M−1

1 = L∞−1
2 M3L∞2M2L∞−1

2 M−1
3 L∞2

so

M2 = M3L∞2M2L∞−1
2 M−1

3

and L∞2 is then a multiple of the identity unless M2 is diagonal. In the latter case
M1,M2,M∞ are all diagonal and thus M3 is diagonal too. In the former case
[M1,M3] = 0, i.e. M3 is diagonal and thus M2 is diagonal. We find again (3.4). For
M1 = ±1, M2 = M−1

3 and all matrices commute again. The last case to be considered
is when M∞ = ±1 and none of Mk is diagonalizable. Let us work in the basis of
M1 in upper-triangular Jordan form. Then L∞3 is in upper-triangular Jordan form and
[M2,M3] = 0. As above

M2 = M3L∞2M2L∞−1
2 M−1

3

andL∞2 is then the identity unless M2 is in upper-triangular Jordan form. In the latter case
M1,M2,M∞ are all in upper-triangular Jordan form and thus M3 is in upper-triangular
Jordan form too. In the former case [M1,M3] = 0, i.e. M3 is in upper-triangular Jordan
form and thus M2 is in upper-triangular Jordan form. We find again (3.4).

�

4. Reducible monodromy groups

Theorem 4.1. All solutions of the PVI equation corresponding to reducible monodromy groups
are equivalent via birational canonical transformations and symmetries to the following one-
parameter family of solutions, realized for ϑ∞ = −(ϑ1 + ϑ2 + ϑ3):

y = (1 + ϑ1 + ϑ2 − x − ϑ2x)u(x) − x(x − 1)ux(x)

(1 + ϑ1 + ϑ2 + ϑ3)u(x)
(4.1)

where u(x) = u1(x) + νu2(x), u1(x), u2(x) being two linear independent solutions of the
following hypergeometric equation:

x(1 − x)uxx(x) + [2 + ϑ1 + ϑ2 − (4 + ϑ1 + 2ϑ2 + ϑ3)x]ux(x)

−(2 + ϑ1 + ϑ2 + ϑ3)(ϑ2 + 1)u(x) = 0. (4.2)
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Proof. For reducible monodromy groups there exists a basis in which all monodromy matrices
are upper triangular. We can always perform a change of basis in order that M∞ has the
form (2.8) and all monodromy matrices have the form

Mk =
(

exp(π iϑk) ,

0 exp(−π iϑk)

)
.

It then follows, by the relation (2.11), that ϑ∞ + εk
∑

k ϑk = 2N , εk = ±1, N ∈ Z. By means
of the birational canonical transformations and symmetries of the PVI equation, we can always
assume that εk = +1 and N = 0. Perform the following gauge transformation on the Fuchsian
system:

� → �̃ =
3∏

k=1

(λ − uk)
−ϑk

2 � Ak → Ãk = Ak − ϑk

2
1.

The new residue at infinity is

Ã∞ =
(

0 0
0 −ϑ∞+

∑
ϑk

2

)

and the new monodromy matrices are

M̃k = exp(−π iϑk)Mk =
(

1 ,

0 exp(−2π iϑk)

)
k = 1, 2, 3

and

M̃∞ =
(

1 0
0 exp[π i(−ϑ∞ +

∑
k ϑk)]

)
exp(R∞).

Since all monodromy matrices have the first column given by
(1

0

)
, the new Fuchsian system

admits a non-zero single-valued vector solution Ỹ . This solution is analytic at u1, u2 and u3

because all residue matrices Ãk , k = 1, 2, 3 have a zero eigenvalue. At infinity Ỹ is necessarily
constant. Thus, near each uj , one has

Ãj

λ − uj
Ỹ + O(1) = 0

that implies that Ỹ has the form
(
a

0

)
, for some a �= 0, and all residue matrices Ak are upper

triangular. Correspondinglyp = ∑3
k=1

ϑk
(q−uk)

and the solution y(x) of PVI is given by (4.1). �

Remark 4.2. Observe that the appearance of the hypergeometric equation in theorem 4.1 is
quite natural. In fact, when all the residue matrices Ak are upper triangular, the Schlesinger
equations, and thus the Painlevé VI equation, linearize.

Lemma 4.3. The one-parameter family of classical solutions (4.1) contains at least one
rational solution if and only if one of the values ϑ1, ϑ2, ϑ3, ϑ∞ is an integer.

Proof. The one-parameter family of classical solutions (4.1) contains at least one algebraic
solution if and only if the corresponding Riccati equation

yx(x) = 1 + ϑ1 + ϑ2 + ϑ3

x(x − 1)
y2 − 1 + ϑ1 + ϑ2 + ϑ1x + ϑ3x

x(x − 1)
y +

ϑ1

x − 1

has at least one algebraic solution, i.e., if and only the corresponding hypergeometric
equation (4.2) is integrable in the sense of differential Galois theory (see [Mor]). This happens
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if and only if the parameters λ, µ,ν of the hypergeometric equation belong to the Schwartz–
Kimura table (see [Mor]). In particular rational solutions occur only when at least one of
the numbers µ − λ + ν, µ − λ − ν, µ + λ + ν and µ + λ − ν is an odd integer. In our case
λ = −1 − ϑ1 − ϑ2, µ = 1 + ϑ1 + ϑ3 and ν = −1 − ϑ3 − ϑ2 so the one-parameter family of
classical solutions (4.1) contains at least one rational solution if and only if one of the values
ϑ1, ϑ2, ϑ3, ϑ∞ is an integer. �

To conclude the proof of the main theorem, we observe that all Abelian 2×2 monodromy
groups are reducible. Thus all rational solutions of the PVI equation belong to the one-
parameter family of classical solutions given in theorem 4.1. Then we can use lemma 4.3 to
classify them.
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